Learning Multiple Models of Non-linear Dynamics for Control Under Varying Contexts

نویسندگان

  • Georgios Petkos
  • Marc Toussaint
  • Sethu Vijayakumar
چکیده

For stationary systems, efficient techniques for adaptive motor control exist which learn the system’s inverse dynamics online and use this single model for control. However, in realistic domains the system dynamics often change depending on an external unobserved context, for instance the work load of the system or contact conditions with other objects. A solution to context-dependent control is to learn multiple inverse models for different contexts and to infer the current context by analyzing the experienced dynamics. Previous multiple model approaches have only been tested on linear systems. This paper presents an efficient multiple model approach for non-linear dynamics, which can bootstrap context separation from context-unlabeled data and realizes simultaneous online context estimation, control, and training of multiple inverse models. The approach formulates a consistent probabilistic model used to infer the unobserved context and uses Locally Weighted Projection Regression as an efficient online regressor which provides local confidence bounds estimates used for inference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NON-FRAGILE GUARANTEED COST CONTROL OF T-S FUZZY TIME-VARYING DELAY SYSTEMS WITH LOCAL BILINEAR MODELS

This paper focuses on the non-fragile guaranteed cost control problem for a class of T-S fuzzy time-varying delay systems with local bilinear models. The objective is to design a non-fragile guaranteed cost state feedback controller via the parallel distributed compensation (PDC) approach such that the closed-loop system is delay-dependent asymptotically stable and the closed-loop performance i...

متن کامل

Learning dynamics for robot control under varying contexts

High fidelity, compliant robot control requires a sufficiently accurate dynamics model. Often though, it is not possible to obtain a dynamics model sufficiently accurately or at all using analytical methods. In such cases, an alternative is to learn the dynamics model from movement data. This thesis discusses the problems specific to dynamics learning for control under nonstationarity of the dy...

متن کامل

Non-Linear Inflationary Dynamics based on the Concept of Missing Money in Iran

In this research, non-linear inflationary dynamics based on the concept of missing money is studied using the threshold autoregressive models based on seasonal data of the time interval (1990:04-2016:07) for the economy of Iran. The finding of the research shows that simple and Divisia liquidity growth variables are determined as threshold variables, and inflation reacts to changes in the growt...

متن کامل

Potentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems

Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...

متن کامل

Measuring a Dynamic Efficiency Based on MONLP Model under DEA Control

Data envelopment analysis (DEA) is a common technique in measuring the relative efficiency of a set of decision making units (DMUs) with multiple inputs and multiple outputs. ‎‎Standard DEA models are ‎‎quite limited models‎, ‎in the sense that they do not consider a DMU ‎‎at different times‎. ‎To resolve this problem‎, ‎DEA models with dynamic ‎‎structures have been proposed‎.‎In a recent pape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006